math/big.nat.bitLen (method)

19 uses

	math/big (current package)
		ftoa.go#L96: 		d.init(x.mant, int(x.exp)-x.mant.bitLen())
		ftoa.go#L187: 	exp := int(x.exp) - mant.bitLen()
		ftoa.go#L188: 	s := mant.bitLen() - int(x.prec+1)
		int.go#L456: 	n := x.abs.bitLen() // NB: still uses slow crypto impl!
		int.go#L550: 	return x.abs.bitLen()
		int.go#L894: 	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
		nat.go#L663: func (x nat) bitLen() int {
		nat.go#L1381: 	z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x
		nat.go#L1400: 	if uint(x.bitLen()) > n {
		nat.go#L1408: 	if uint(y.bitLen()) > n {
		natconv.go#L275: 	i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most
		natconv.go#L376: 			maxLength := q.bitLen()     // ~= log2 q, or at of least largest possible q of this bit length
		natconv.go#L501: 				table[i].nbits = table[i].bbb.bitLen()
		prime.go#L96: 	nm3Len := nm3.bitLen()
		prime.go#L253: 	for i := int(s.bitLen()); i >= 0; i-- {
		rat.go#L95: 	alen := a.bitLen()
		rat.go#L99: 	blen := b.bitLen()
		rat.go#L193: 	alen := a.bitLen()
		rat.go#L197: 	blen := b.bitLen()